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Catalytic asymmetric syntheses of chiral quinoline derivatives coloration changed from the initial light yellow to deep green after
are of great importance, because many biologically and pharma-only 2 min at 100°C. The color was deep green, but the mixture
cologically active alkaloids bear this skeleteh.Thermal and was still a clear solution. The color became pale as the reactions
transition metal-catalyzéayntheses of quinolines have thus been proceeded, and finally turned yellow-orange.
amply investigated. For the construction of these heterocycles, the The success in the enantioselective quinoline-cyclizatiors of
cycloisomerization and ene-type cyclization of 1,6-enynes catalyzed to 2 prompted us to challenge the enantioselective construction of
by transition metal complexes to form a five-membered ring have spiro-quinoline rings. Enyne substrafa, which has a five-
attracted much intere$tAsymmetric versions with high enantio-  membered cyclic olefin, gave the desired spiro-ring prodadiut
meric excesses have been developed by using chiral Rh and Pdn 62% yield and 71% ee, along with tlaehiral olefin-migratiori?
complexes as catalysts® Despite the synthetic potential of 1,7- product5a (38% yield) (eq 2). The six-membered ring substrate
enyne, there has been no report of transition metal-catalyzed

asym_mgtric si_x—mem_bered ri_ng formation frpm 1,7-enyne, due to = COMe [ MeCN),Pd(BF,), (5 mol%)
the difficulty in forming a six-membered ring as compared to (S)-BINAP (10 mol%)

forming a five-membered ring. Herein, we report the first efficient N HCOOH (1 eq.) l
asymmetric synthesis of six-membered quinoline derivatives bearing T:\Qn DMSO, 100 °C, 2-12h

a quaternary carbon center or a spiro-ring, by the ene-type 3a (n=1) MeO,C.
cyclization of 1,7-enynes catalyzed by the cationic BINARI(II) 3b (n=2)

complex?-10

[(MeCN),Pd](BF ), (5 mol%)

" e,

@QA e

4a 62%, 71% ee 5a 38%
5b 96%, 44% ee

(1) 3b gave completely olefin-migrated spiro-quinolifb as the sole
#s (S)-BINAP (10 mol%) product (96%) with 44% ee. The moderate yield and/or enantiose-
HCOOH (1 eq.) lectivity obtained ford and5 might be due to the migration of the
1a (R = COMe) DMSO, 100 °C, 1-3 h 2a 99%, >99% ee olefin at this high temperature and long reaction time: The desired

1b (R=H) 2b 99%, >99% ee

product4awas indeed, under the reaction conditions, transformed
to 5aby the Pd(ll) catalyst. To avoid this olefin-migration problem
and to clarify the real enantioselectivity for spiro-systems, trans-
formation of substratés, with a pyran as a cyclic olefin, was
examined (eq 3).

The reaction of 1,7-enynes was performed by a combination of
5 mol % of a cationic Pd(ll) catalyst such as [(MeGRJ](BF).,
10 mol % of §-BINAP as a chiral bidentate PP-ligand, and 1 equiv
of formic acid, in DMSO. Cyclization of substratk leads to
quinoline2 with a quaternary carbon center (eq 1). Eeyof which

R
the terminal acetylene is functionalized by a carbomethoxy group, = [(MeCN),Pd](BF4) (5 mol%)
cyclization gave?a as asingle enantiomeand in quantitative yield (5)-BINAP (10 mol%)

within 3 h. Substratélb also cyclized under the same conditions N = HCOOH (1 eq.)

within 1 h toafford the corresponding chiral quinolit® bearing Ts/\Q) DMSO, 100°C, 1h

an exomethylene moiety. Remarkably, the presence of this highly 6a (R = CO,Me) 7a >00%, 99% ee

reactive terminal acetylene does not lead to side reactions such as  6b (R=H) 7b >99%, 98% ee
polymerizations! By contrast, aryl- or silyl-protecting groups (R

= Ph or MgSi) could not give the corresponding quinolines at all, With both functionalized and naked terminal acetylenes, cy-

leading to the full recovery of starting materials. Moreover, the clizations of6éa and6b proceeded successfully to givea and7b,
ortho-substituted benzene skeleton is essential, because non-benzaespectively, achieving the spiro-ring formation in quantitative yield
fused 1,7-enynes provide no six-membered products. and 98% ee. The structures of the spiro-pyran prodiatnd7b

The formation of these quinolines can be easily followed by the were confirmed by X-ray diffraction analysié®> The ORTEP
variation of coloration of the reaction. Usually, the color of the drawings are shown in Figure 1. F@a, a wr-stacking interaction
mixtures containing Pd(Il) species is yellow to dark red-brown for between the tosyl moiety and methyl ester moiety is observed, with
the common palladium-catalyzed reactions such as the Mizeroki a nearest length of only 3.59 A. On the other handbinthe tosyl
Heck reaction, the SuzukiMiyaura cross-coupling reaction, the  moiety is directed outside, and mestacking structure is observed.
allylation reaction, or even the ene-type cyclizatiéklowever, in Finally, the spiro-quinoline formation was applied to a large
the present ene-type reactions leading to the chiral quinolines, themembered ring. Substra8& bearing a 15-membered cyclic olefin
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Figure 1. ORTEP drawings of the spiro-quinolin@sa and 7b.

and a terminal acetylene, was cyclized under the previously

described conditions to give the olefin migration prod@ctn

moderate yield (53%) but good enantioselectivity (86% ee) (eq 4).

4
[(MeCN),Pd](BF4), (5 mol%)
(S)-BINAP (10 mol%)
HCOOH (1 eq.)
DMSO, 100°C, 1 h

53%, 86% ee

In conclusion, we have developed a highly enantioselective
method for the synthesis of quinoline via ene-type cyclization of

1,7-enynes catalyzed by the cationic BINApalladium(ll) com-

plex. This is the first example of asymmetric ene-type cyclization
affording six-membered ring compounds, with a quaternary carbon

center or a spiro-ring.
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Crystal data forain X-ray analysis: formula &H,3NOsS, triclinic, space
%roup P-1 (No. 2),a = 8.7188(5) Ab = 14.5607(7) A,c = 8.5946(5)

, o= 99.563(3}, = 89.5260(1), y = 73.718(4), V = 1031.05(10)
A3,z =2, andD = 1.371 g cm?3. X-ray diffraction data were collected
on a Rigaku R-AXIS CS diffractometer with graphite-monochromated
Mo Ko (4 = 0.71069 A) at— 40 °C, and the structure was solved by
direct methods (SIR97). The final cycle of full-matrix least-squares
refinement was based on 4233 observed reflectibns §o(1)) and 271
variable parameters and convergedRc= 0.0647 andR, = 0.1817.
Crystallographic data (excluding structure factors) for the structure reported
in this paper have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication no. CCDC-196469. Copies of
the data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB21EZ, UK (fax: +44)1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).
Crystal data fob in X-ray analysis: formula §H2;NOsS, monoclinic,
space groupP2./c (No. 14),a = 9.3996(2) A,b = 19.4020(4) Ac =
9.8885(2) A3 = 92.8800(1), V = 1801.10(6) &, Z = 4, andD = 1.355
g cnr 3. X-ray diffraction data were collected on a Rigaku R-AXIS CS
diffractometer with graphite-monochromated Ma 4 = 0.71069 A) at
—40 °C, and the structure was solved by direct methods (SIR97). The
final cycle of full-matrix least-squares refinement was based on 4115
observed reflectiond & 30(1)) and 235 variable parameters and converged
to R=0.0508 andr,, = 0.1391. Crystallographic data have been deposited
as no. CCDC-196470.
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